
EECS 482 Introduction to Operating Systems
Spring/Summer 2020

Lecture 12: Multilevel paging and eviction

Based on slides by Harsha V. Madhyastha

Nicole Hamilton
https://web.eecs.umich.edu/~nham/

nham@umich.edu

https://web.eecs.umich.edu/%7Enham/
mailto:nham@umich.edu

Agenda
1. Midterm.

2. Paging.

3. Multilevel paging.

4. Translation lookaside buffer.

5. Eviction.

2

Agenda
1. Midterm.

2. Paging.

3. Multilevel paging.

4. Translation lookaside buffer.

5. Eviction.

3

Midterm exam
Online using Crabster.org
Wed Jun 24 3:00 to 5:00
pm EDT.

If you need an
accommodation, please
let us know soon.

4

Material for midterm:

1. All the lecture topics from
start until end of lecture 9 on
deadlock.

2. All the labs on these topics.

3. Projects 1 and 2.

Midterm exam
Two sample exams posted on web page.
Solutions in lab section this Friday.
Review session Sat Jun 20 12:00 noon to 3:00 pm EDT.

5

Agenda
1. Midterm.

2. Paging.

3. Multilevel paging.

4. Translation lookaside buffer.

5. Eviction.

6

Dynamic address translation

7

Break the requirement that the process space be
contiguous.

MMU strategies we’ll discuss:
1. Base and bounds.
2. Segmentation.
3. Paging.

user
process

translator
(MMU)

physical
memoryvirtual

address
physical
address

Paging
Allocate phys. memory in fixed-size units (pages)

Any free physical page can store any virtual page

8

Address Space

Page 1

Page 2

Page 3

Page N

Physical Memory

9

Page Lookups

Phys page #

Page number Offset
Virtual Address

Page Table
Page number Offset
Physical Address

Physical Memory

Paging
Each virtual page can
be in physical memory
or “paged out” to disk.

Pages can also have
different protections
(e.g., read, write,
execute).

10

MMU_translation()
{
if (virtual page is

invalid or non-resident or protected)
trap to OS fault handler;

else
{
physical page # =

pageTable[virtual page #].physPageNum;
physical address =

concat(Physical page #, offset);
}

}

Paging

11

Virtual page # Physical page # Resident Protection
0 105 0 RX
1 15 1 R
2 283 1 RW
3 invalid
... invalid
1048575 invalid

Valid virtual page is legal for process to access.
Resident virtual page is valid and in physical memory.
Error to access invalid page, but not to access non-resident page.

Paging

12

Virtual page # Physical page # Resident Protection
0 105 0 RX
1 15 1 R
2 283 1 RW
3 invalid
... invalid
1048575 invalid

Causes of a page fault:
1. Invalid page or disallowed by protection bits, often a user bug.
2. Not resident and must be brought in by the OS.

Page table size
Page size is typically 4 KB or 8 KB.
Some architectures support multiple page sizes.

Each process with a 32-bit address space with 4-byte page table
entries requires:

232

4096
∗ 4 = 4 𝑀𝑀𝑀𝑀

A 64-bit address space with 8-byte entries requires:

264

4096
∗ 8 = 3.6 ∗ 1016 = 36 𝑃𝑃𝑃𝑃

13

Paging
Pros
1. Simple memory allocation.
2. Flexible sharing.
3. Easy to grow address space.

Cons
1. Large page table size.

But the vast majority of all page table entries will be
marked invalid.

14

15

Sparse Address Space
Virtual
page #

Physical
page #

0 105
1 15
2 283
3 invalid
... invalid
1048572 invalid
1048573 1078
1048574 48136
1048575 60

Stack

Code

Heap

Invalid

Most processes use only a
tiny fraction of their 32 or
64-bit address space.

They usually have a huge
hole in the middle.

So we only need to
represent that part of the
page table that isn’t marked
invalid.

Agenda
1. Midterm.

2. Paging.

3. Multilevel paging.

4. Translation lookaside buffer.

5. Eviction.

16

17

A standard page table is a
simple array.

Multi-level paging
generalizes this into a tree,
filling in only the parts of the
tree that aren’t marked
invalid.

With multilevel paging, a lot
of the entries in any given
page table will be null.

Multi-level Paging

Image source: Anderson & Dahlin, Operating Systems: Principles and Practice, p. 398.

18
Image source: Anderson & Dahlin, Operating Systems: Principles and Practice, p. 398.

When a process starts, a
new L1 page table is
allocated, then filled in
with L2 and L3 leaves as
new pages are made
valid.

When a process ends,
the entire tree of L1, L2
and L3 tables is deleted.

19

Questions:

What must be changed on a
context switch?

How would you share
memory between
processes?

What’s not to like about this
strategy?

Multi-level Paging

Image source: Anderson & Dahlin, Operating Systems: Principles and Practice, p. 398.

20

What must be changed on a
context switch?

Pointer to a level 1 page
table.

Multi-level Paging

Image source: Anderson & Dahlin, Operating Systems: Principles and Practice, p. 398.

21

How would you share
memory between
processes?

Share either individual
pages or large blocks of
pages by sharing a level 1,
2 or 3 entry.

Multi-level Paging

Image source: Anderson & Dahlin, Operating Systems: Principles and Practice, p. 398.

22

What’s not to like about this
strategy?

Every memory access by a
user application requires
multiple table lookups.

Multi-level Paging

Image source: Anderson & Dahlin, Operating Systems: Principles and Practice, p. 398.

Multilevel paging
Pros
1. Simple memory allocation.
2. Flexible sharing.
3. Easy to grow address space.
4. Space-efficient representation of the page table.

Cons
1. Two or more extra lookups per memory reference.

What could be done to solve this?
We can cache the translations in hardware.

23

Agenda
1. Midterm.

2. Paging.

3. Multilevel paging.

4. Translation lookaside buffer.

5. Eviction.

24

25
Image source: Wikipedia, “Page table”.

TLB caches the virtual
page number to PTE
mapping.

A cache hit skips all the
translation steps.

A cache miss requires
searching the page table,
updating the TLB, and
restarting the instruction.

26
Image source: Wikipedia, “Page table”.

TLB caches the virtual
page number to PTE
mapping.

A cache hit skips all the
translation steps.

A cache miss requires
searching the page table,
updating the TLB, and
restarting the instruction.

27
Image source: Wikipedia, “Page table”.

The TLB is implemented
in hardware as a
content-addressable
memory that acts like a
map in C++.

Page table lookups are
done in software in the
operating system.

28
Image source: Wikipedia, “Page table”.

What do you have to do
in a context switch?

Reload the TLB.

Page replacement
Not at all valid pages can be in physical memory.

Must decide how to handle loads/stores to non-resident
pages.

Sometimes, we will need to evict a page to make room
for another.

29

Agenda
1. Midterm.

2. Paging.

3. Multilevel paging.

4. Translation lookaside buffer.

5. Eviction.

30

Page Replacement
Not all valid pages may fit in physical memory
Some pages must be paged out (written) to disk.
Disk is the “backing store”, physical mem acts as cache.

To read in a page from disk, some resident page may need to be paged
out, “evicted”, first.

Need an algorithm to decide which page to evict to make space.
Goal: minimize page faults.

31

Replacement policies
Possibilities:
1. Random.
2. First in, first out (FIFO).
3. An imaginary optimum.
4. Least recently used (LRU).

32

FIFO
Under FIFO, we replace the oldest page brought into memory.
May replace pages that continue to be frequently used.

33

A B C D C E A C D B C
A A A A A E E E E E E

B B B B B A A A A A
C C C C C C C B B

D D D D D D D C

Header row is sequence of accesses to 5 virtual pages A thru E that are paged in and
out of 4 physical pages in memory, represented by the rows.
Each cell indicates what virtual page is in that physical page.

A B C D C E A C D B C
A A A A A A A A A A A

B B B B E E E E B B
C C C C C C C C C

D D D D D D D D

Optimal replacement
Under an optimal strategy, we would replace the page that won’t be
used again for the longest time, minimizing cache misses.
But that requires knowledge of the future!

34

Header row is sequence of accesses to 5 virtual pages A thru E that are paged in and
out of 4 physical pages in memory, represented by the rows.
Each cell indicates what virtual page is in that physical page.

A B C D C E A C D B C
A A A A A A A A A A A

B B B B E E E E B B
C C C C C C C C C

D D D D D D D D

LRU
Under LRU, we approximate the optimal solution by using past
references. If a page hasn’t been used for a while, we assume it
probably won’t be used again anytime soon.

35

Header row is sequence of accesses to 5 virtual pages A thru E that are paged in and
out of 4 physical pages in memory, represented by the rows.
Each cell indicates what virtual page is in that physical page.

Why would this work well?

A B C D C E A C D B C
A A A A A A A A A A A

B B B B E E E E B B
C C C C C C C C C

D D D D D D D D

LRU
Works well because of temporal locality: Recently accessed pages
are often accessed again. Surprisingly good approximation of the
optimum and hard to beat.

36

Header row is sequence of accesses to 5 virtual pages A thru E that are paged in and
out of 4 physical pages in memory, represented by the rows.
Each cell indicates what virtual page is in that physical page.

But could there be situations where doesn’t work?

A B C D E A B C D E A
A A A A E E E E D D D

B B B B A A A A E E
C C C C B B B B A

D D D D C C C C

LRU
But depending on the access pattern, it can sometimes it can be
very wrong!

37

Header row is sequence of accesses to 5 virtual pages A thru E that are paged in and
out of 4 physical pages in memory, represented by the rows.
Each cell indicates what virtual page is in that physical page.

Approximating LRU
Can’t afford to timestamp every access and maintain an actual
queue, so we approximate with hardware support.

Most MMUs maintain a “referenced” bit for each resident page.
Set by MMU when page is read or written.
Can be cleared by OS.

How to use reference bit to identify old pages?
Clear reference bit for all pages.
After some time, examine reference bits.
Reference bit = 0 for pages not accessed recently.

38

Clock replacement algorithm
Arrange resident pages around a clock.
(You’ll do this in project 3.)

To select a page for eviction:
1. Consider page pointed to by clock hand.
2. If not referenced, evict page.
3. If referenced, clear reference bit.
4. Continue until a page is found that hasn’t been

referenced.

39

A

E

BF

D

C

Clock example

40

P1: 1

P2: 1

P3: 1

P8: 1

P7: 0

P6: 1

P5: 1

P4: 0

P1: 0

P2: 0

P3: 0

P8: 1

P7: 0

P6: 1

P5: 1

P4: 1

What if all pages referenced since last sweep?

Page eviction
Some questions.
1. Where does the evicted page go?

It will go to disk.
2. When do you not need to write page to disk?

When it’s not been changed.
Rely on hardware to maintain dirty bit in PTE.

3. Why not write to disk on every store?
Would make every write as slow as the disk.
Write to disk only when necessary.

4. How can you optimize eviction?

41

Page table entry

42

Physical page # Resident Protection Dirty Referenced

Written by OS, Read by MMU
Written by OS/MMU

Read by OS

MMU_translation()
{
if (virtual page is invalid or non-resident or protected)

trap to OS fault handler;
else

{
physical page # = pageTable[virtual page #].physPageNum;
pageTable[virtual page #].referenced = true;
if (access is write)

pageTable[virtual page #].dirty = true;
physical address = concat(Physical page #, offset);
}

}

Page table entry

43

Physical page # Resident Protection Dirty Referenced

Written by OS, Read by MMU
Written by OS/MMU

Read by OS

Why no valid bit in PTE?
All invalid virtual pages are non-resident.

Valid non-resident pages: where’s the disk block?
OS must maintain this, MMU simply traps to OS.

How can we make do without resident bit?
Clear protection bits when non-resident to cause hardware fault.

Page table entry

44

Physical page # Resident Protection Dirty Referenced

Written by OS, Read by MMU
Written by OS/MMU

Read by OS

Can we make do without the dirty bit?
Have OS set the dirty bit itself.
Naive solution: Trap on every store & mark dirty.

How to reduce # of page faults?
Only care about transition from clean to dirty.
Clean pages have 0 write protection bit.
Dirty pages have usual value.

Page table entry

45

Physical page # Resident Protection Dirty Referenced

Written by OS, Read by MMU
Written by OS/MMU

Read by OS

Can we make do without the dirty bit?
Have OS set the dirty bit itself.
Naive solution: Trap on every store & mark dirty.

How to reduce # of page faults?
Only care about transition from clean to dirty.
Clean pages have 0 write protection bit.
Dirty pages have usual value.

Page table contents

Can we make do without referenced bit?
Can use similar trick as that used for dirty bit
Insight: only care about unreferenced  referenced

MMU simpler but page fault handler more complex

46

Physical page # Protection Referenced

	EECS 482 Introduction to Operating Systems�Spring/Summer 2020�Lecture 12: Multilevel paging and eviction
	Agenda
	Agenda
	Midterm exam
	Midterm exam
	Agenda
	Dynamic address translation
	Paging
	Page Lookups
	Paging
	Paging
	Paging
	Page table size
	Paging
	Sparse Address Space
	Agenda
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Multilevel paging
	Agenda
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Page replacement
	Agenda
	Page Replacement
	Replacement policies
	FIFO
	Optimal replacement
	LRU
	LRU
	LRU
	Approximating LRU
	Clock replacement algorithm
	Clock example
	Page eviction
	Page table entry
	Page table entry
	Page table entry
	Page table entry
	Page table contents

